EDITORIAL

Shaping the future of thyroid cancer management and research; grouping the dots (...)

Tania Jabbar¹, Muhammad Babar Imran^{1,2}

Thyroid cancer stands as the most prevalent malignancy within the endocrine system, with a notably higher incidence in women. Research consistently demonstrates that women are approximately 2.9 times more likely to develop thyroid cancer than their male counterparts. This gender disparity is most pronounced in the less aggressive histologic subtypes of thyroid cancer, which are more common in women. However, in the case of more aggressive thyroid cancer forms, the gender distribution tends to be more equally distributed, suggesting that while certain forms of thyroid cancer are more prevalent in women, the more aggressive types tend to affect both genders similarly [1].

Over the last two decades, the clinical presentation and management of thyroid cancer have undergone substantial transformation. One of the most significant advancements has been in diagnostic imaging techniques, particularly ultrasound and fine-needle aspiration biopsy (FNAB), which have greatly enhanced the detection of thyroid nodules. This has had a direct impact on the early identification of thyroid cancer, leading to a substantial increase in the reported incidence of the disease.

It is noteworthy that up to 80% of women may develop thyroid nodules during their lifetime, although only a small proportion - between 5% and 15% - of these nodules are cancerous. The sheer volume of detected nodules has contributed to the rise in thyroid cancer diagnoses, bringing with it the need for a re-evaluation of treatment strategies [2]. Consequently, the increased detection of thyroid abnormalities has led to a paradigm shift in how we perceive and manage thyroid cancers. More nuanced and individualized treatment plans are now necessary to avoid overdiagnosis and overtreatment, particularly in cases involving small, indolent tumors that may not warrant aggressive interventions.

Pakistan Journal of Nuclear Medicine

Volume 14(2):36-37

DOI: 10.24911/PJNMed.175-1741589163

This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: https://creativecommons.org/licenses/by/4.0/) which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s) 2024

Pakistan Journal of Nuclear Medicine is the official journal of Pakistan Society of Nuclear Medicine

As the clinical complexity of thyroid cancer cases has evolved, so too has the demand for innovative management strategies and novel therapeutic advancements. While conventional therapies such as complete thyroidectomy and radioactive iodine (RAI) therapy remain integral components of treatment protocols, the realization of potential overtreatment, especially for patients with small, indolent tumors, has prompted a shift toward more tailored methodologies. One key example of this trend is the increasing adoption of active surveillance for certain patients with low-risk tumors. This strategy seeks to balance the benefits of treatment with the preservation of quality of life, reducing unnecessary side effects associated with aggressive interventions. Active surveillance, particularly in the case of small papillary thyroid carcinomas (PTCs), is being recognized as a viable management option for patients who do not require immediate treatment, but who can be closely monitored for any changes in their tumor status over time.

The most remarkable shift in thyroid cancer management has been spurred by a growing understanding of its molecular foundations. Investigations into the genetic abnormalities and cellular processes unique to thyroid cancer have facilitated the development of targeted therapies that specifically target cancer cells. This advancement aims to reduce side effects by sparing normal tissues and enhancing therapeutic outcomes. By identifying the molecular drivers of thyroid malignancies, such as B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, Rearranged during Transfection/Papillary thyroid carcinoma (RET/PTC) rearrangements, and Telomerase reverse transcriptase (TERT) promoter mutations, we can now treat thyroid cancer with greater precision, enabling personalized treatment plans that are tailored to the genetic profile of each patient's tumor. These therapies

Received: 10 March 2025

Address for correspondence: Muhammad Babar Imran
*Editor in Chief, Pakistan Journal of Nuclear Medicine

Email: muhammadbabarimran@yahoo.com

Full list of author information is available at the end of the article.

promise more effective and less toxic treatments, with the potential to significantly improve patient survival and quality of life [3].

The integration of molecular diagnostics into clinical practice has revolutionized risk stratification. For instance, genetic alterations such as BRAF mutations and TERT promoter mutations can provide deeper insights into the prognosis of thyroid cancer patients, aiding in the determination of whether they are at risk for more aggressive forms of the disease. These findings have made it possible to predict not only which patients may benefit from surgery or RAI therapy but also which patients might be candidates for newer, targeted treatments. As our understanding of thyroid cancer biology continues to advance, these insights are expected to lead to even more personalized, precision-based care.

The contributions within this special issue, Thyroid Insights, bring together the latest research on advanced diagnostic and therapeutic techniques in thyroid health. Case reports in this issue explore the diverse spectrum of thyroid nodules, ranging from benign lesions to aggressive, rare variants. A particularly noteworthy case featured in this issue discusses the coexistence of papillary thyroid carcinoma (PTC) and Hodgkin's lymphoma, offering critical insights into the mechanisms and functional interplay of these two malignancies when they occur simultaneously. Such case reports help broaden our understanding of thyroid cancer's complex clinical behavior, providing further evidence for the necessity of individualized treatment strategies.

While most differentiated thyroid cancers respond well to RAI therapy, cases of RAI-refractory thyroid cancer remain a significant challenge. Recent studies highlighted in this issue have reported promising results using local therapies, such as external beam radiation therapy (EBRT) and kinase inhibitors, for managing these resistant cancers. Additionally, the potential morphological effects of RAI on benign thyroid nodules are also explored, raising important concerns about the long-term risks of RAI therapy, particularly regarding the induction of thyroid cancer in previously benign nodules.

Advances in genomic research have revolutionized our ability to assess risk and predict the course of thyroid cancer. Mutations in key genes such as BRAF, TERT, RAS, and RET/PTC offer not only refined prognostic insights but also provide targets for new drug development. The incorporation of artificial intelligence (AI) and machine learning (ML) into thyroid cancer risk prediction models

has further advanced our ability to make data-driven decisions for patient care. Technologies such as voxel-based dosimetry and AI-driven algorithms have started to be integrated into clinical settings, enhancing decision-making and refining personalized treatment plans.

Moreover, the role of cutting-edge imaging technologies continues to grow. Techniques such as Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging, using radiopharmaceuticals such as 123I, 131I, and 99mTc, as well as newer isotopes such as 124I, 18F, and 68Ga, have expanded our ability to not only diagnose thyroid cancer but also to monitor disease progression and response to therapy. The introduction of theranostic approaches, combining diagnostic imaging and targeted therapy, represents a major advancement in thyroid cancer management, enabling more precise, personalized treatment options.

This special issue of Thyroid Insights encapsulates the latest advances in thyroid cancer research while also fostering an environment of collaboration among researchers and clinicians. By encouraging ongoing dialogue, these contributions drive forward progress in the field, facilitating innovation in both the diagnostic and therapeutic realms. The integration of advanced molecular diagnostics, precision medicine, and next-generation imaging technologies provides a strong foundation for the future of thyroid cancer management. Moving forward, continued collaboration and innovation will be the key to further improving patient outcomes, ensuring that thyroid cancer care remains personalized, effective, and minimally invasive.

Author details

Tania Jabbar¹, Muhammad Babar Imran^{1,2}

- 1. Punjab Institute of Nuclear Medicine, Faisalabad, Pakistan
- 2. Editor in Chief, Pakistan Journal of Nuclear Medicine

References

- LeClair K, Bell KJL, Furuya-Kanamori L, Doi SA, Francis DO, Davies L. Evaluation of gender inequity in thyroid cancer diagnosis: differences by sex in US thyroid cancer incidence compared with a meta-analysis of subclinical thyroid cancer rates at autopsy. JAMA Intern Med. 2021;181(10):1351–8. https://doi.org/10.1001/ jamainternmed.2021.4804
- Nabhan F, Dedhia PH, Ringel MD. Thyroid cancer, recent advances in diagnosis and therapy. Int J Cancer. 2021;149(5):984–92. https://doi.org/10.1002/ijc.33690
- Guo M, Sun Y, Wei Y, Xu J, Zhang C. Advances in targeted therapy and biomarker research in thyroid cancer. Front Endocrinol (Lausanne). 2024;15:1372553.