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ABSTRACT

Background: Thyroid cancer recurrence poses a significant challenge in oncology, necessitating effective tools for early
prediction. Machine learning (ML) models offer the potential to improve prognostic accuracy and guide clinical decision-making.

Aim and Objective: This study aims to investigate the efficacy of ML models in predicting thyroid cancer recurrence using a

publicly available dataset comprising 17 features.

Methods: We explored multiple ML algorithms, including Logistic Regression, K-Nearest Neighbors, Random Forest, and
AdaBoost, to develop predictive models. The target variable was the "Recurred" column, indicating whether a patient

experienced recurrence. Performance evaluation was conducted using metrics such as Accuracy, Precision, Recall, F1 Score, and
receiver operating characteristic (ROC) area under the curve (AUC). A correlation heatmap was generated to assess relationships
between features and detect multicollinearity, while feature importance analysis using the Random Forest model identified key

predictors.

Results: Among the models, the Random Forest classifier achieved the highest performance on the test dataset, with an
Accuracy of 0.9818, Precision of 0.9623, Recall of 1.0000, F1 Score of 0.9808, and ROC AUC of 0.9831. The feature importance
analysis highlighted critical factors influencing recurrence prediction, while the correlation heatmap provided insights into

feature interactions.

Conclusion: This study demonstrates the effectiveness of ML models, particularly the Random Forest classifier, in predicting
thyroid cancer recurrence. The insights gained from feature analysis and correlation studies contribute to model interpretability
and future feature selection strategies. These findings emphasize the potential of ML in improving patient outcomes through

early and accurate recurrence prediction.
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Introduction

Thyroid cancer is one of the most common endocrine
malignancies, with a generally favorable prognosis.
However, despite successful initial treatment, a signifi-
cant subset of patients experiences recurrence. Recurrence
can manifest in various forms, such as local recurrence in
the thyroid bed, regional recurrence in the cervical lymph
nodes, or distant metastases. Recurrence not only com-
plicates the clinical management of the disease but also
impacts the patient's quality of life and survival rates [1,2].
Several factors contribute to the risk of recurrence in thy-
roid cancer patients, including: Tumor Characteristics:
size, histological type, and presence of vascular invasion,
aggressive subtypes like poorly differentiated or anaplas-
tic thyroid cancer are more prone to recurrence, Patient
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Characteristics: age and gender, genetic predispositions
and other comorbidities, Initial Treatment: completeness
of surgical resection, efficacy of radioactive iodine ther-
apy and thyroid hormone suppression therapy [3-5].

Challenges in Predicting Recurrence

Accurate prediction of thyroid cancer recurrence is chal-
lenging due to the heterogeneity of the disease and the
complex interplay of various risk factors. Traditional
prognostic models, based on clinical and pathological
parameters, offer limited predictive power. This neces-
sitates the development of more sophisticated prediction
tools to identify high-risk patients who may benefit from
closer monitoring and more aggressive adjuvant therapies.
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Machine Learning in Recurrence Prediction
Machine learning (ML), a subset of artificial intelligence,
provides robust techniques for handling complex, high-di-
mensional data. ML algorithms can identify subtle pat-
terns and interactions within data that may not be apparent
through conventional statistical methods. In the context of
thyroid cancer recurrence, ML models can leverage clin-
ical, demographic, and molecular data to develop highly
accurate predictive models. There are some Advantages
of ML for Recurrence Prediction: High Dimensionality:
Ability to process and analyze large datasets with many
features, Non-linearity: Capability to model complex,
non-linear relationships between features and outcomes
and Adaptability: Potential to update and improve models
as new data becomes available [3,4,6,7].

ML Classification Models

To predict thyroid cancer recurrence, the diverse array
of sophisticated machine-learning classification models
exists, each characterized by unique algorithmic para-
digms and theoretical foundations [7-9].

Logistic Regression

Logistic Regression operates under the framework of
generalized linear models, utilizing a logistic function to
model the probability of binary outcomes. It is lauded for
its interpretability, as the coefficients provide insight into
the relationship between predictor variables and the tar-
get outcome, making it a powerful tool for understanding
underlying patterns in binary classification tasks.

K-Nearest Neighbors (KNNs)

The Kneighbors Classifier epitomizes a non-paramet-
ric, instance-based learning approach. By classifying
an observation based on the majority class of its nearest
neighbors in the feature space, KNN effectively captures
complex, non-linear decision boundaries. Its simplic-
ity belies its efficacy, particularly in contexts where the
decision boundary is intricate and difficult to approximate
with parametric models.

Random Forest

The Random Forest Classifier embodies the ensemble
learning paradigm by constructing a multitude of decision
trees during training and aggregating their predictions.
This method enhances predictive accuracy and robustness
by mitigating overfitting and leveraging the strengths of
multiple trees. Each tree is trained on a random subset
of the data, a technique known as bootstrap aggregation
or bagging, which ensures diversity among the trees and
improves generalization [6,10-18].

AdaBoost
The AdaBoost Classifier or Adaptive Boosting is an
ensemble technique that sequentially combines weak
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learners to form a robust classifier. By iteratively adjusting
the weights of misclassified instances, AdaBoost focuses
subsequent learners on the most challenging cases. This
adaptive process enhances the model's capacity to mini-
mize errors and improve overall predictive performance,
particularly in scenarios where the underlying data distri-
bution is complex.

These models were meticulously chosen for their com-
plementary strengths and diverse algorithmic foundations,
ensuring a comprehensive evaluation of multiple ML
methodologies in predicting thyroid cancer recurrence.
By leveraging the unique advantages of each model, we
aim to identify the most effective approach for this critical
clinical prediction task.

Materials and Methods

Dataset

The publicly available CSV dataset used in this study
contains a comprehensive set of clinical and demo-
graphic features related to thyroid cancer patients [3-5].
The dataset includes various attributes such as the
patient's age at diagnosis, gender, current smoking sta-
tus, smoking history, and history of radiotherapy. It also
contains information on thyroid function, results from
physical examinations, and the presence of adenopathy.
Pathological findings of the tumor, the number of cancer
foci, and risk stratification based on clinical parameters
are recorded. Additionally, the dataset incorporates tumor
size and extent, regional lymph node involvement, and
the presence of distant metastasis according to the TNM
staging system. The overall cancer stage is based on TNM
classification, while the response to initial treatment and
whether cancer recurred are also documented, with the lat-
ter serving as the target variable indicating recurrence as a
binary outcome. This dataset allows for a detailed analysis
of various factors (as displayed in Figure 1) influencing
thyroid cancer recurrence, enabling the development of
robust predictive models.

Limitations of the Study

While the dataset used in this study provides a compre-
hensive range of clinical and pathological attributes rele-
vant to thyroid cancer recurrence, it is important to note
the absence of detailed surgical data. Specific informa-
tion regarding the type of surgery, completeness of tumor
resection, and the use of adjunct therapies, which are
critical factors influencing recurrence, is not included in
the dataset. This limitation restricts the ability of our pre-
dictive models to fully account for the impact of surgi-
cal interventions on patient outcomes. Future studies that
incorporate detailed surgical variables may offer more
robust predictions and should be considered to further
enhance the accuracy and applicability of recurrence pre-
diction models in thyroid cancer.
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Figure 1. Dataset features and description.

Dataset preprocessing
To address the class imbalance in our dataset, we employed
the Synthetic Minority Over-sampling Technique
(SMOTE). Imbalanced datasets can lead to biased models
that favor the majority class, thereby reducing their pre-
dictive performance. SMOTE generates synthetic samples
for the minority class, effectively balancing the class dis-
tribution and ensuring that the model can learn equally
from all classes. This technique was crucial for creating
a resampled dataset where minority class instances were
increased to match the majority class, thus enhancing
the model's ability to generalize across different classes
[19-25].

Furthermore, we normalized specific numerical fea-
tures to ensure they are on a comparable scale, which is
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vital for optimizing model performance. Normalizing the
features ensures that they have the same scale, prevent-
ing any single feature from disproportionately influenc-
ing the model's learning process. This scaling technique
prepared our dataset for model training and evaluation,
ensuring uniformity and consistency across the selected
features. These preprocessing steps significantly con-
tribute to the robustness and reliability of the subsequent
machine-learning models [26-28].

Evaluation metrics

To comprehensively evaluate the performance of our
classification model, we employed several key metrics:
Accuracy, Precision, Recall, F1 Score, receiver operating
characteristic (ROC) area under the curve (AUC) Score,
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and the Confusion Matrix [10,29]. Each of these metrics
provides unique insights into the model's effectiveness
and reliability.

Accuracy

This metric represents the proportion of correctly predicted
instances out of the total instances. It is a straightforward
measure of overall correctness but can be misleading in
the presence of class imbalance.

Precision

Precision measures the proportion of true positive predic-
tions out of all positive predictions made by the model.
It indicates the accuracy of the positive predictions and
is particularly important when the cost of false positives
is high.

Recall

Also known as sensitivity or true positive rate, recall
measures the proportion of true positive predictions out
of all actual positives. It is crucial for understanding the
model's ability to identify all relevant instances, which is

vital in scenarios where missing positive cases is costly.

F1 Score

The F1 Score is the harmonic mean of precision and
recall. It provides a balanced measure that considers both
false positives and false negatives, making it useful when
dealing with imbalanced datasets.

ROC AUC Score

The ROC curve plots the true positive rate against the
false positive rate at various threshold settings. The AUC
quantifies the overall ability of the model to discriminate
between positive and negative classes, with a score closer
to 1 indicating better performance.

Confusion matrix

The confusion matrix provides a detailed breakdown of
the model's performance by showing the actual versus
predicted classifications. It includes true positives, true
negatives, false positives, and false negatives, offering a
comprehensive view of where the model is making errors.
These metrics collectively offer a robust framework for
evaluating the classification model, ensuring that both the
overall performance and the performance across different
classes are thoroughly assessed.

Results and Discussion
To understand the relationships between the various fea-
tures in our dataset, we generated a correlation heatmap
[4] using the Seaborn library. This heatmap visually rep-
resents the Pearson correlation coefficients between each
pair of features, with values ranging from -1 to 1. A value
close to 1 indicates a strong positive correlation, while a
value close to -1 indicates a strong negative correlation.
Values around 0 suggest no linear correlation between the
features.

In the heatmap Figure 2, darker shades of blue indi-
cate strong negative correlations, while darker shades of
red represent strong positive correlations. The annotated
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Figure 2. correlation heatmap between different features.
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Figure 3. Feature importance.
Table 1. Evaluation matrices for different classification models on test dataset.
Model Accuracy Precision Recall F1 Score ROC AUC
Logistic Regression 0.927,273 0.890,909 0.960,784 0.924,528 0.929,545
K-Nearest Neighbors 0.972,727 0.961,538 0.980,392 0.970,874 0.973,247
Random Forest 0.981,818 0.962,264 1 0.980,769 0.983,051
AdaBoost 0.963,636 0.927,273 1 0.962,264 0.966,102

Abbreviations: ROC, receiver operating characteristic; AUC, Area Under Curve.

values provide the exact correlation coefficients for pre-
cise interpretation. This visualization helps identify poten-
tial multicollinearity among features and highlights the
features most strongly correlated with our target variable,
aiding in the feature selection process for model building
and interpretation.

Feature importance [7,30] analysis plays a crucial role
in understanding the predictive capabilities of ML models.
In this study, the feature importance plot (Figure 3) illus-
trates the relative importance of each feature in predicting
the target variable. Features with higher importance val-
ues (represented by taller bars) exert greater influence on
the model's predictions, indicating their significant role in
distinguishing patterns related to the target variable. This
visual representation aids in identifying key predictors
and understanding their impact on model performance and
decision-making processes. Higher feature importance
values suggest stronger predictive power and emphasize
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the relevance of these features in the context of the studied
dataset and model architecture.

The performance of various classification models used
in this study is summarized in Table 1, which presents the
evaluation metrics for each model on the test dataset. The
Random Forest model emerged as the best-performing
model, achieving the highest accuracy of 0.981818 and
a perfect recall score of 1.000000. This indicates that the
Random Forest model was highly effective in identifying
all instances of thyroid cancer recurrence in the test data-
set. Moreover, the precision and F1 Score for the Random
Forest model were also notably high, at 0.962264 and
0.980769, respectively, underscoring its balanced perfor-
mance in both sensitivity and specificity. The ROC AUC
score of 0.983051 further validates the superior discrimi-
natory power of the Random Forest model.

In comparison, the KNNs model also showed strong
performance, with an accuracy of 0.972727 and a high
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F1 Score of 0.970874. AdaBoost achieved commendable
results as well, with an accuracy of 0.963636 and a per-
fect recall score of 1.000000, although its precision and
F1 Score were slightly lower than those of the Random
Forest model. Logistic Regression, while the least effec-
tive among the four, still provided reasonable accuracy
and balanced evaluation metrics.

Conclusion

These results highlight the robustness and reliability of
the Random Forest classifier in predicting thyroid can-
cer recurrence, making it a valuable tool for clinical
decision-making. The comparative analysis also empha-
sizes the importance of model selection and evaluation in
developing predictive models for medical applications,
demonstrating that while all tested models performed
well, the Random Forest classifier offered the best overall
performance.
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