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Prediction of thyroid cancer 
recurrence with machine learning 
models
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ABSTRACT
Background: Thyroid cancer recurrence poses a significant challenge in oncology, necessitating effective tools for early 
prediction. Machine learning (ML) models offer the potential to improve prognostic accuracy and guide clinical decision-making.

Aim and Objective: This study aims to investigate the efficacy of ML models in predicting thyroid cancer recurrence using a 
publicly available dataset comprising 17 features.

Methods: We explored multiple ML algorithms, including Logistic Regression, K-Nearest Neighbors, Random Forest, and 
AdaBoost, to develop predictive models. The target variable was the "Recurred" column, indicating whether a patient 
experienced recurrence. Performance evaluation was conducted using metrics such as Accuracy, Precision, Recall, F1 Score, and 
receiver operating characteristic (ROC) area under the curve (AUC). A correlation heatmap was generated to assess relationships 
between features and detect multicollinearity, while feature importance analysis using the Random Forest model identified key 
predictors.

Results: Among the models, the Random Forest classifier achieved the highest performance on the test dataset, with an 
Accuracy of 0.9818, Precision of 0.9623, Recall of 1.0000, F1 Score of 0.9808, and ROC AUC of 0.9831. The feature importance 
analysis highlighted critical factors influencing recurrence prediction, while the correlation heatmap provided insights into 
feature interactions.

Conclusion: This study demonstrates the effectiveness of ML models, particularly the Random Forest classifier, in predicting 
thyroid cancer recurrence. The insights gained from feature analysis and correlation studies contribute to model interpretability 
and future feature selection strategies. These findings emphasize the potential of ML in improving patient outcomes through 
early and accurate recurrence prediction.
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Introduction
Thyroid cancer is one of the most common endocrine 

malignancies, with a generally favorable prognosis. 

However, despite successful initial treatment, a signifi-

cant subset of patients experiences recurrence. Recurrence 

can manifest in various forms, such as local recurrence in 

the thyroid bed, regional recurrence in the cervical lymph 

nodes, or distant metastases. Recurrence not only com-

plicates the clinical management of the disease but also 

impacts the patient's quality of life and survival rates [1,2].

Several factors contribute to the risk of recurrence in thy-

roid cancer patients, including: Tumor Characteristics: 

size, histological type, and presence of vascular invasion, 

aggressive subtypes like poorly differentiated or anaplas-

tic thyroid cancer are more prone to recurrence, Patient 

Characteristics: age and gender, genetic predispositions 

and other comorbidities, Initial Treatment: completeness 

of surgical resection, efficacy of radioactive iodine ther-

apy and thyroid hormone suppression therapy [3-5].

Challenges in Predicting Recurrence
Accurate prediction of thyroid cancer recurrence is chal-

lenging due to the heterogeneity of the disease and the 

complex interplay of various risk factors. Traditional 

prognostic models, based on clinical and pathological 

parameters, offer limited predictive power. This neces-

sitates the development of more sophisticated prediction 

tools to identify high-risk patients who may benefit from 

closer monitoring and more aggressive adjuvant therapies.
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Machine Learning in Recurrence Prediction
Machine learning (ML), a subset of artificial intelligence, 

provides robust techniques for handling complex, high-di-

mensional data. ML algorithms can identify subtle pat-

terns and interactions within data that may not be apparent 

through conventional statistical methods. In the context of 

thyroid cancer recurrence, ML models can leverage clin-

ical, demographic, and molecular data to develop highly 

accurate predictive models. There are some Advantages 

of ML for Recurrence Prediction: High Dimensionality: 

Ability to process and analyze large datasets with many 

features, Non-linearity: Capability to model complex, 

non-linear relationships between features and outcomes 

and Adaptability: Potential to update and improve models 

as new data becomes available [3,4,6,7].

ML Classification Models
To predict thyroid cancer recurrence, the diverse array 

of sophisticated machine-learning classification models 

exists, each characterized by unique algorithmic para-

digms and theoretical foundations [7-9]. 

Logistic Regression
Logistic Regression operates under the framework of 

generalized linear models, utilizing a logistic function to 

model the probability of binary outcomes. It is lauded for 

its interpretability, as the coefficients provide insight into 

the relationship between predictor variables and the tar-

get outcome, making it a powerful tool for understanding 

underlying patterns in binary classification tasks.

K-Nearest Neighbors (KNNs)
The Kneighbors Classifier epitomizes a non-paramet-

ric, instance-based learning approach. By classifying 

an observation based on the majority class of its nearest 

neighbors in the feature space, KNN effectively captures 

complex, non-linear decision boundaries. Its simplic-

ity belies its efficacy, particularly in contexts where the 

decision boundary is intricate and difficult to approximate 

with parametric models.

Random Forest
The Random Forest Classifier embodies the ensemble 

learning paradigm by constructing a multitude of decision 

trees during training and aggregating their predictions. 

This method enhances predictive accuracy and robustness 

by mitigating overfitting and leveraging the strengths of 

multiple trees. Each tree is trained on a random subset 

of the data, a technique known as bootstrap aggregation 

or bagging, which ensures diversity among the trees and 

improves generalization [6,10-18].

AdaBoost
The AdaBoost Classifier or Adaptive Boosting is an 

ensemble technique that sequentially combines weak 

learners to form a robust classifier. By iteratively adjusting 

the weights of misclassified instances, AdaBoost focuses 

subsequent learners on the most challenging cases. This 

adaptive process enhances the model's capacity to mini-

mize errors and improve overall predictive performance, 

particularly in scenarios where the underlying data distri-

bution is complex.

These models were meticulously chosen for their com-

plementary strengths and diverse algorithmic foundations, 

ensuring a comprehensive evaluation of multiple ML 

methodologies in predicting thyroid cancer recurrence. 

By leveraging the unique advantages of each model, we 

aim to identify the most effective approach for this critical 

clinical prediction task.

Materials and Methods

Dataset
The publicly available CSV dataset used in this study 

contains a comprehensive set of clinical and demo-

graphic features related to thyroid cancer patients [3-5]. 

The dataset includes various attributes such as the 

patient's age at diagnosis, gender, current smoking sta-

tus, smoking history, and history of radiotherapy. It also 

contains information on thyroid function, results from 

physical examinations, and the presence of adenopathy. 

Pathological findings of the tumor, the number of cancer 

foci, and risk stratification based on clinical parameters 

are recorded. Additionally, the dataset incorporates tumor 

size and extent, regional lymph node involvement, and 

the presence of distant metastasis according to the TNM 

staging system. The overall cancer stage is based on TNM 

classification, while the response to initial treatment and 

whether cancer recurred are also documented, with the lat-

ter serving as the target variable indicating recurrence as a 

binary outcome. This dataset allows for a detailed analysis 

of various factors (as displayed in Figure 1) influencing 

thyroid cancer recurrence, enabling the development of 

robust predictive models.

Limitations of the Study
While the dataset used in this study provides a compre-

hensive range of clinical and pathological attributes rele-

vant to thyroid cancer recurrence, it is important to note 

the absence of detailed surgical data. Specific informa-

tion regarding the type of surgery, completeness of tumor 

resection, and the use of adjunct therapies, which are 

critical factors influencing recurrence, is not included in 

the dataset. This limitation restricts the ability of our pre-

dictive models to fully account for the impact of surgi-

cal interventions on patient outcomes. Future studies that 

incorporate detailed surgical variables may offer more 

robust predictions and should be considered to further 

enhance the accuracy and applicability of recurrence pre-

diction models in thyroid cancer.
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Dataset preprocessing
To address the class imbalance in our dataset, we employed 

the Synthetic Minority Over-sampling Technique 

(SMOTE). Imbalanced datasets can lead to biased models 

that favor the majority class, thereby reducing their pre-

dictive performance. SMOTE generates synthetic samples 

for the minority class, effectively balancing the class dis-

tribution and ensuring that the model can learn equally 

from all classes. This technique was crucial for creating 

a resampled dataset where minority class instances were 

increased to match the majority class, thus enhancing 

the model's ability to generalize across different classes 

[19-25].

Furthermore, we normalized specific numerical fea-

tures to ensure they are on a comparable scale, which is 

vital for optimizing model performance. Normalizing the 

features ensures that they have the same scale, prevent-

ing any single feature from disproportionately influenc-

ing the model's learning process. This scaling technique 

prepared our dataset for model training and evaluation, 

ensuring uniformity and consistency across the selected 

features. These preprocessing steps significantly con-

tribute to the robustness and reliability of the subsequent 

machine-learning models [26-28].

Evaluation metrics
To comprehensively evaluate the performance of our 

classification model, we employed several key metrics: 

Accuracy, Precision, Recall, F1 Score, receiver operating 

characteristic (ROC) area under the curve (AUC) Score, 

Figure 1. Dataset features and description. 
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and the Confusion Matrix [10,29]. Each of these metrics 

provides unique insights into the model's effectiveness 

and reliability.

Accuracy
This metric represents the proportion of correctly predicted 

instances out of the total instances. It is a straightforward 

measure of overall correctness but can be misleading in 

the presence of class imbalance.

Precision
Precision measures the proportion of true positive predic-

tions out of all positive predictions made by the model. 

It indicates the accuracy of the positive predictions and 

is particularly important when the cost of false positives 

is high.

Recall
Also known as sensitivity or true positive rate, recall 

measures the proportion of true positive predictions out 

of all actual positives. It is crucial for understanding the 

model's ability to identify all relevant instances, which is 

vital in scenarios where missing positive cases is costly.

F1 Score
The F1 Score is the harmonic mean of precision and 

recall. It provides a balanced measure that considers both 

false positives and false negatives, making it useful when 

dealing with imbalanced datasets.

ROC AUC Score
The ROC curve plots the true positive rate against the 

false positive rate at various threshold settings. The AUC 

quantifies the overall ability of the model to discriminate 

between positive and negative classes, with a score closer 

to 1 indicating better performance.

Confusion matrix
The confusion matrix provides a detailed breakdown of 

the model's performance by showing the actual versus 

predicted classifications. It includes true positives, true 

negatives, false positives, and false negatives, offering a 

comprehensive view of where the model is making errors.

These metrics collectively offer a robust framework for 

evaluating the classification model, ensuring that both the 

overall performance and the performance across different 

classes are thoroughly assessed.

Results and Discussion
To understand the relationships between the various fea-

tures in our dataset, we generated a correlation heatmap 

[4] using the Seaborn library. This heatmap visually rep-

resents the Pearson correlation coefficients between each 

pair of features, with values ranging from -1 to 1. A value 

close to 1 indicates a strong positive correlation, while a 

value close to -1 indicates a strong negative correlation. 

Values around 0 suggest no linear correlation between the 

features.

In the heatmap Figure 2, darker shades of blue indi-

cate strong negative correlations, while darker shades of 

red represent strong positive correlations. The annotated 

Figure 2. correlation heatmap between different features. 
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values provide the exact correlation coefficients for pre-

cise interpretation. This visualization helps identify poten-

tial multicollinearity among features and highlights the 

features most strongly correlated with our target variable, 

aiding in the feature selection process for model building 

and interpretation.

Feature importance [7,30] analysis plays a crucial role 

in understanding the predictive capabilities of ML models. 

In this study, the feature importance plot (Figure 3) illus-

trates the relative importance of each feature in predicting 

the target variable. Features with higher importance val-

ues (represented by taller bars) exert greater influence on 

the model's predictions, indicating their significant role in 

distinguishing patterns related to the target variable. This 

visual representation aids in identifying key predictors 

and understanding their impact on model performance and 

decision-making processes. Higher feature importance 

values suggest stronger predictive power and emphasize 

the relevance of these features in the context of the studied 

dataset and model architecture.

The performance of various classification models used 

in this study is summarized in Table 1, which presents the 

evaluation metrics for each model on the test dataset. The 

Random Forest model emerged as the best-performing 

model, achieving the highest accuracy of 0.981818 and 

a perfect recall score of 1.000000. This indicates that the 

Random Forest model was highly effective in identifying 

all instances of thyroid cancer recurrence in the test data-

set. Moreover, the precision and F1 Score for the Random 

Forest model were also notably high, at 0.962264 and 

0.980769, respectively, underscoring its balanced perfor-

mance in both sensitivity and specificity. The ROC AUC 

score of 0.983051 further validates the superior discrimi-

natory power of the Random Forest model.

In comparison, the KNNs model also showed strong 

performance, with an accuracy of 0.972727 and a high 

Figure 3. Feature importance. 

Table 1. Evaluation matrices for different classification models on test dataset. 

Model Accuracy Precision Recall F1 Score ROC AUC

Logistic Regression 0.927,273 0.890,909 0.960,784 0.924,528 0.929,545

K-Nearest Neighbors 0.972,727 0.961,538 0.980,392 0.970,874 0.973,247

Random Forest 0.981,818 0.962,264 1 0.980,769 0.983,051

AdaBoost 0.963,636 0.927,273 1 0.962,264 0.966,102

Abbreviations: ROC, receiver operating characteristic; AUC, Area Under Curve. 
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F1 Score of 0.970874. AdaBoost achieved commendable 

results as well, with an accuracy of 0.963636 and a per-

fect recall score of 1.000000, although its precision and 

F1 Score were slightly lower than those of the Random 

Forest model. Logistic Regression, while the least effec-

tive among the four, still provided reasonable accuracy 

and balanced evaluation metrics.

Conclusion
These results highlight the robustness and reliability of 

the Random Forest classifier in predicting thyroid can-

cer recurrence, making it a valuable tool for clinical 

decision-making. The comparative analysis also empha-

sizes the importance of model selection and evaluation in 

developing predictive models for medical applications, 

demonstrating that while all tested models performed 

well, the Random Forest classifier offered the best overall 

performance.
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